
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Conference on Advances in Engineering and Technology

(AET- 29th March 2014)

Maharishi Markandeshwar University 62 | P a g e

Workflow Scheduling In Grid Environment

Neeraj Mangla
1
 and Manpreet Singh

2

1
Department of Computer Science & Engineering, M. M. Engineering College, M. M. University, Ambala,

Haryana
1
erneerajynr@gmail.com,

2
Department of Computer Science & Engineering, M. M. University, Sadopur, Ambala, Haryana

2
dr.manpreet.singh.in@gmail.com

ABSTRACT
Task scheduling in heterogeneous computing environment such as grid computing is a critical and challenging

problem. Many parallel applications consist of multiple computational components. While the execution of

some of these components or tasks depends on the completion of other tasks, others can be executed at the same

time, which increases parallelism of the problem. The task scheduling problem is the problem of assigning the

tasks in the system in a manner that will optimize the overall performance of the application, while assuring the

correctness of the result. Scientific workflows, usually represented as Directed Acyclic Graphs (DAGs), are an

important class of applications that lead to challenging problems in resource management on grid and utility

computing systems. In this dissertation, a priority scheduling heuristic is developed which maintains a list of all

tasks of a given DAG according to their priorities. It firstly prioritizes all tasks and then selects the best resource

for the ready task with highest priority.

Keywords- Grid Computing, Work flow, Scheduling, DAG.

I. INTRODUCTION
Grid Computing can be defined as the

seamless provision of access to possibly remote,

heterogeneous, untrusting, dynamic computing

resources [1][2]. Grid applications are usually

divided into many interdependent subtasks in real

applications. Every single subtask is processed and

the subtasks should process concurrently in order to

reduce the task running time, which is one of the

most important problems in parallel computing.

Workflow applications incorporate multiple

dependent modules to be executed in a predefined

order and may entail the transfer and storage of a

huge amount of data. A very important issue in

executing a scientific workflow in computational

grids is how to map and schedule workflow tasks

onto multiple distributed resources and handle task

dependencies in a timely manner to deliver users’

expected performance [5] [6]. Directed acyclic graph

(DAG) is usually used to illustrate the data

dependency among subtasks in workflows [3]. In

DAG, workflow structure can be categorized into

sequence, parallelism, and choice. Sequence is

defined as an ordered series of tasks, with one task

starting after a previous task has completed.

Parallelism represents tasks which are performed

concurrently, rather than serially. In choice control

pattern, a task is selected to execute at run-time when

its associated conditions are true.

The workflow execution time consists

mainly of two parts: the task execution time and data

transfer time. The task execution time is not simply

the sum of times spent carrying out all tasks because

some of them are executed concurrently. For a

workflow that can be modeled as a DAG, critical

tasks are those that must be started on their earliest

start times in order to achieve the best performance of

the workflow execution [7]. The sum of the execution

times of critical tasks is the time spent for workflow

task execution. In a workflow, if two tasks having

data dependencies, such as intermediate files are

allocated on different resources then intermediate

files need to be transferred between the two

resources. In a grid environment with slow network,

the data transfer time may become a significant part

of the total workflow execution time. But not all data

transfers impact the workflow performance; only

those that delay the launching of critical tasks,

directly or indirectly, do so.

A workflow scheduler should have two

capabilities: first, resource allocation, which

distributes tasks onto multiple resources and second,

task execution and coordination, which submits tasks

to the resource’s local schedulers in the right order,

and handles task dependencies [4]. In a DAG

workflow, the task dependencies determine the order

of task submission and file transfer, which is the

topological order of the workflow DAG. In this

order, the earliest start-time of each task can be

calculated easily, as long as we know when the

workflow itself should be started. An allocated

resource for a task should be available before its

RESEARCH ARTICLE OPEN ACCESS

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Conference on Advances in Engineering and Technology

(AET- 29th March 2014)

Maharishi Markandeshwar University 63 | P a g e

earliest start-time so that no delay is incurred because

of the unavailability of resources [8].

In this paper, the grid workflow scheduling problem

is formulated and a priority based solution is

discussed. A separate module is developed to

generate the DAG topology of a workflow. Given the

workflow structure and the number of processors

with randomly generated processing power, the

mapping scheme using both priority based and round-

robin strategy is established separately.

II. RELATED WORK
Finding a single best solution for mapping

workflows onto Grid resources for all workflow

applications is difficult since applications and Grid

environments can have different characteristics [9].

Many researchers have studied scheduling strategies

for mapping application workflows onto the grid. In

[10], authors developed a framework to schedule a

DAG in a Grid environment that makes use of

advance reservation of resources and also considers

the availability knowledge about task execution time,

transfer rates, and available processors to generate a

schedule. Their simulation results show advantages

of unified scheduling of tasks rather than scheduling

each task separately. A static scheduling is applied

[11] to ensure that the key computational steps are

executed on the right resources and large scale data

movement is minimized. Authors use performance

estimators to schedule workflow applications. In

[12], authors mapped the entire workflow to

resources at once or portions of it. This mapping can

be done before or during the workflow execution.

Their algorithm prefers to schedule computation

where data already exist. Additionally, users are able

to specify their own scheduling algorithm or to

choose between a random and a round robin schedule

technique. A new grid scheduling algorithm that

minimizes the cost of the execution of workflows

while ensuring that their associated QoS constraints

are satisfied is proposed [13]. The algorithm views a

grid environment as a queuing system and schedules

tasks within this system. This algorithm is system

oriented and considers the execution cost. Hence, it is

suitable for economic grids. Since the algorithm is

non-linear, as the size of the problem gets large the

time it takes to obtain a suitable scheduling becomes

very long and unacceptable.

III. SYSTEM FRAMEWORK &

IMPLEMENTATION
3.1 Directed Acyclic Graph (DAG)

Task scheduling problem in computational

grid can be represented as DAG, a directed graph

with no directed cycles. In a DAG, a node is an

individual task and an edge represents the inter-job

dependency. A child task cannot be executed before

all its parent task finish successfully and its required

data inputs in place. Nodes and edges are weighed for

computation cost and communication cost

respectively.

1. Decide the levels of the graph.

2. For each level do

3. Begin

4. Allocate tasks to the level.

5. End

6. For each intermediate level do

7. Begin

8. For each task do

9. Begin

10. Make at least one

dependency of the task(it) with the tasks

of

its previous and next level each.

11. Assign weight to the

dependencies.

12. End

13. End

In above algorithm, there are certain

numbers of levels. On each level, some number of

tasks is assigned not necessarily to be different. There

is at least one dependency of each task with the tasks

of its previous and next level each, such that each and

every task has its predecessor and successor.

3.2 Round Robin Scheduling Algorithm

It is a static scheduling strategy which maps

resources to each individual task before workflow

execution. In this approach, resources are assigned in

round robin manner. In the round- robin scheduling

algorithm, initially processors are allocated to the

tasks of workflow application. After allocation of

processors, EST(Earliest Start Time) and EFT

(Earliest Finish time) for each task is calculated. For

EST, communication cost between task and its parent

is considered if both are on different processors.

There may be more than one parent of a single task.

Corresponding to each parent, EST is to be calculated

and then maximum value among those will be EST

for the task. EFT can be calculated as sum of EST

and computation time of task on the allocated

processor. Finally the EFT for the last task also

known as exit task is makespan for the workflow

application. The algorithm is as follows:

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Conference on Advances in Engineering and Technology

(AET- 29th March 2014)

Maharishi Markandeshwar University 64 | P a g e

1. For each task do

2. Begin

3. Allocate processor to the task(it)

in the round robin manner.

4. End

5. For each task do

6. Begin

7. Calculate EST for the task(it)

corresponding to each parent and then

choose the maximum of those which will be

EST(it) for the task(it).

8. Calculate EFT(it) = EST(it) +

Computation Time of task(it) on the

allocated Processor.

9. End

10. Makespan = EFT(exitt).

3.3 Priority Based Scheduling Algorithm

It is a list scheduling strategy, where a

resource mapping is done only when a task is ready

to execute without requiring any prior application and

environment knowledge. Here, tasks are prioritized

and executed in the order of their priorities.

In this algorithm, initially priority is

assigned to the tasks at each level. Priority can be

assigned in the decreasing order of their linkcost

which is the sum of the uplink and downlink cost

where uplinkcost is the maximum of the

communication cost among its successor and

downlink cost is the maximum of the communication

cost among its predecessors. Higher prioritised task is

executed first. Now, EST for the task with respect to

each processor corresponding to all parents is

calculated and among those maximum value of EST

is chosen for that processor. Then EFT is calculated

corresponding to each EST and minimum EFT is

selected and hence the processor with minimum EFT

is allocated to the task. Finally, the EFT for the last

task also known as exit task is makespan for the

workflow application. Algorithm is as follows:

1. For each level do

2. Begin
3. For each task do

4. Begin

5. Calculate Downlinkcost(

it) of task(it).

6. Calculate Uplinkcost(it)

of task(it).

7. Calculate Linkcost(it)=Downlinkcost

(it)+Uplinkcost(it)+

max{linkcost of its Predecessor}.

8. End

9. Sort the tasks in decreasing order

of their linked cost and assign priority to

them.

10. End

11. For each level do

12. Begin
13. For each task according to

their priority do

14. Begin

15. For each processor

do

16. Begin
17. Calculate

EST for task(it) corresponding to each

parent for processor kp and then choose

maximum of those which will be EST(
kit ,

).

18. Calculate

EFT(
kit ,

) = EST(
kit ,

) + Computation Time

of task(it) on processor k.

19. End

20. Choose the

processor with minimum EFT of task(it)

and allocate it to task(it).

21. End

22. End

23. Makespan = EFT(exitt).

IV. RESULTS & DISCUSSION
This section contains a description of

experiments carried out during simulation in Java

along with relevant parameters as shown in Table 1.

Table 1: Simulation Parameters

Parameter

Value

Simulation Runs

10

Number of Levels

7-20

Number of Tasks

25-100

Number of Processors

5-30

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Conference on Advances in Engineering and Technology

(AET- 29th March 2014)

Maharishi Markandeshwar University 65 | P a g e

Table 2: Makespan of Workflow Applications with

variation in No. of Tasks

Number

of Tasks

Number

of

Levels

Makespan

(Round

Robin)

Makespan(Priority)

25 7 520 332

50 10 835 592

75 12 1024 757

100 20 1810 1087

Table 3: Makespan of Workflow Applications with

variation in No. of Processors

Number

of

Processors

Makespan(Round

Robin)

Makespan(Priority)

5 1638 1073

10 1793 1030

15 1864 1001

20 1773 1020

25 1771 1048

30 2023 1009

Figure 1: Comparison of Makespan for Different

Number of Tasks

The performance of these algorithms is

tested under two scenarios. In scenario 1 with a

simulation run of 10 times, DAG is randomly

generated with 4 different numbers of tasks, i.e. 25,

50, 75 and 100 and the execution environment

comprises of 5 processors as shown in Figure 1 and

Table 2. In scenario 2 with a simulation run of 10

times, DAG is randomly generated comprising of 100

tasks and executed in a system with processing

capability of 5, 10, 15, 20 and 25 processors as

shown in Figure 2 and Table 3. Simulation results

confirmed that priority based workflow scheduling

has significant performance improvement over

round-robin approach.

Figure 2: Comparison of Makespan for Different

Number of Processors

V. CONCLUSION
Tasks with DAG dependencies are frequent

in case of Grid applications and they require

advanced scheduling procedures. In this research

work, the grid workflow scheduling problem is

formulated and a priority based solution is discussed.

Simulation results show that priority based workflow

scheduling outperforms the traditional round-robin

policy commonly used in real systems.

Future work will include, among other things: the

analysis of a wider set of scheduling algorithms

currently used in Grid systems and the establishment

of relevant performance measures.

REFERENCES
[1] I. Foster, C. Kesselman, and S. Tuecke,

“The anatomy of the grid: enabling scalable

virtual organizations,” International Journal

of High Performance Computing

Applications, 15 (3), 2001, 200-222.

[2] R. Buyya and S. Venugopal, “A Gentle

Introduction to Grid Computing and

Technologies” CSI Communication, 2005,

9-19.

[3] Ehsan Ullan Munir and Jian-Zhong Li.

Performance Analysis of Task Scheduling

Heuristics in grid. Proceedings of the Sixth

International Conference on Machine

Learning and Cybernetics, Hong Kong,

2007, 19-22.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Conference on Advances in Engineering and Technology

(AET- 29th March 2014)

Maharishi Markandeshwar University 66 | P a g e

[4] E. Deelman, J. Blythe, Y. Gil, C.

Kesselman, G. Mehta, K. Vahi, K.

Blackburn, A. Lazzarini, A. Arbree, R.

Cavanaugh, S. Korranda, “Mapping abstract

complex workflows onto Grid

environments”, Journal of Grid Computing,1

(1), 2003, 25-39.

[5] E. Ilavarasan and R. Manoharan, “High

Performance and Energy Efficient Task

Scheduling Algorithm for Heterogeneous

Mobile computing System”, International

Journal of Computing Science and

Engineering, 2 (2), 2010.

[6] J. Yu, R. Buyya and K. Ramamohanarao

,“Workflow Scheduling Algorithms for Grid

Computing”, Metaheuristic for scheduling in

Distributed Computing Environments,

Springer Verlag, 146 (1), 2008, 173-214.

[7] L. Canon, E. Jeannot, R. Sakellariou and W.

Zheng, “Comparative Evaluation of the

Robustness of DAG Scheduling Heuristics,”

Grid Computing, 2008, 73-84.

[8] Marek Mika Wojciech Piątek, Grzegorz

Waligóra, Jan Węglarz, “Computational

Experiments for Scheduling Workflow

Applications in Grid Environment”,

Computational Methods in Science and

Technology, 17 (1), 2011, 53-62.

[9] J. Yu and R. Buyya, “A Taxonomy of

Workflow Management Systems for Grid

Computing”, Journal of Grid

Computing, 3 (3-4), 2005, 171-200.

[10] Ammar H. Alhusaini, Viktor K. Prasanna,

C.S. Raghavendra. "A Unified Resource

Scheduling Framework for Heterogeneous

Computing Environments," Heterogeneous

Computing Workshop, 1999, 156-165.

[11] A. Mandal, K. Kennedy, C. Koelbel, G.

Marin, J. Crummey, B. Liu, L. Johnsson,

“Scheduling Strategies for Mapping

Application Workflows onto the Grid”, The

14th IEEE International Symposium on

High-Performance Distributed Computing

(HPDC-14), 2005, 125-134.

[12] E. Deelman, J. Blythe, Y. Gil, and C.

Kesselman, “Workflow Management in

GriPhyn”, Grid Resource Management,

Kluwer Academic Publishers, US, 2004.

[13] A. Afzal, A. Stephen McGough and J.

Darlington, “Capacity planning and

scheduling in Grid computing environment”.

Journal of Future Generation Computer

Systems, 24 (2), 2008, 404-414.

